MTH105: Fundamentals of Mathematics Assignment, SUSS, Singapore A set of premises is given below. Determine which of the following statements is a valid conclusion
Question 1
- A set of premises is given below
(𝑝 ⟶ 𝑞) ∨ (~𝑟)
(~𝑝) ∧ (𝑞 ∨ 𝑟)
𝑟 ⟶ (~𝑝)
Determine which of the following statements is a valid conclusion from the above set of premises using truth tables or by providing a logical explanation.
(~ 𝑝) ∨ (~𝑟)
𝑞 ⟶ (𝑝 ∧ (~𝑞))
𝑝 ⟶ (𝑞 ∧ ~𝑟)
- Construct a chain of logical equivalences to show that
(~𝑞 ∧ 𝑟) ⟶ (𝑝 ⟶ 𝑞) ≡ (~𝑞) ⟶ (𝑝 ⟶ ~𝑟).
Do not use truth tables in this part of the question.
- Use the Rules of Inference to prove that the following argument form is valid.
𝑞 ∨ 𝑟
(𝑝 ∧ 𝑞) ⟶ s
~ s
∴ 𝑝 ⟶ 𝑟
Do not use truth tables in this part of the question.
Question 2
- Give a counter-example to show that the following statement is false.
∀𝑥 ∈ ℕ ∀𝑦 ∈ ℝ ∀𝑧 ∈ ℝ ((𝑥2 < 𝑦2) ∨ (𝑦2 < 𝑧2)) ⟶ ((𝑥 < 𝑦) ∨ (𝑦 < 𝑧))
- Provide the negation of the statement, giving your answer without using any logical negation symbol. Equality and inequality symbols such as =, ≠, <, > are allowed.
∃𝑥 ∈ ℤ ∀𝑦 ∈ ℕ ∀𝑧 ∈ ℕ ((𝑥 ≠ 0) ∧ (𝑥𝑦)𝑧 = 1) ⟶ ((𝑧 = 0) ∨ (𝑥𝑦 = 1))
- Let 𝐷 be the set
𝐷 = {−10, −9, −7, −6, −4, −3, −2,0,1,2,3,4,5,6,9,10,12,13,14}.
Suppose that the domain of the variable 𝑥 is 𝐷. Write down the truth set of the predicate.
((𝑥 > 1) ⟶ (𝑥 is even)) ⟶ (𝑥 is divisible by 4).
- Let 𝑃,𝑄, 𝑅, 𝑆 denote predicates. Use the Rules of Inference to prove that the following argument form is valid.
∀𝑥 (𝑃(𝑥) ⟶ (∀𝑦 𝑄(𝑦)))
∀𝑥 (𝑅(𝑥) ⟶ (∃𝑦 ~𝑄(𝑦)))
∃𝑥 (𝑅(𝑥) ∧ 𝑆(𝑥))
∴ ∀𝑥 ~𝑃(𝑥)
Stuck with a lot of homework assignments and feeling stressed ? Take professional academic assistance & Get 100% Plagiarism free papers
Explore top-notch Do My Assignment services at Singapore University of Social Science through Online Assignment Experts. Elevate your grades with Tutor Marked Assignments through My Assignment Help SG. Get ready to excel in MTH105: Fundamentals of Mathematics effortlessly.
- S2010C Health and Wellness Graded Assignment AY2025 Term 4 – Republic Polytechnic (RP)
- RBP040L051 Postgraduate Dissertation Assessment brief – University of Roehampton Business School
- ACFI 2070 Business Finance Individual Assignment – The University of Newcastle (UoN)
- PY2107 Experimental Investigation and Analysis of Behaviour Assignment 2 Written – Research Report , James Cook University (JCU)
- ACCT111 Financial Accounting Individual Assignment, Singapore Management University (SMU)
- RM71003 Category Management & Merchandising Assignment 1 – Singapore Management University (SMU)
- Visual Arts Management Assignment 2 Essay Singapore Art Science Museum – Nanyang Academy of Fine Arts (NAFA)
- BM1987 Employment Law In-Course Assessment (ICA 1) Guide , Nanyang Polytechnic (NYP)
- MA3005/MA3705 Control Theory Coursework 2025-26, Nanyang Technological University (NTU)
- MKT6053 Digital Enterprise Level 6 Coursework Assessment 2025- Birmingham City University (BCU)
